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NOTES ON GAS-DYNAMIC DESIGN OF SUPERSONIC FLYING VEHICLES

UDC 531.3+537.8G. I. Maikapar

It is shown that the lift-to-drag ratio of a thin delta wing is significantly lower than the lift-to-drag
ratio of an infinitely long swept plate with an identical lift force. The effect of sweep on a finite wing
may be used by excluding disturbances from the leading edge of the wing via introducing a “hardened”
stream surface (wedge) and increasing the wing length. A three-shock waverider is proposed for
choosing the optimal parameters. The sharp wedge may be avoided by replacing planar shock waves
by a cylindrical shock wave upstream of the blunted wedge. If the leading edge of the wedge is not
parallel to the rib that is a source of the expansion wave, a plate with zero wave drag, generating a
lift force, may be obtained behind this rib. The system of regularly intersecting shock waves may be
applied to design a forward-swept wing.

Choosing the shape of supersonic flying vehicles is the subject of numerous studies (particularly, in the
U.S.A.). The shape of the vehicle or the shock wave attached to the leading edges is specified parametrically, and
the variational problem is solved numerically, using exact or approximate equations of motion of the gas. Another
widely used method is the gas-dynamic design, which implies composing of the surface of the flying vehicle from
parts of stream surfaces of known flows behind shock waves and expansion waves [1–3]. The advantage of this
method is the goal-oriented choice of gas flows for which exact solutions of equations of motion are available, the
simplicity of calculations, and the smaller number of parameters sufficient to meet the restrictions imposed on
the volume, size, moment, and other parameters during optimization. Adverse effects (separation) are eliminated,
deviations (in practice) from the optimal shape (edge bluntness) do not lead to principal changes in aerodynamic
characteristics, and the flow structure is retained in the case of small deviations from the design regime.

We consider the problem of reduction of the wave (inductive) drag for a given lift force for a thin plane wing
with a shock wave attached to the leading edge. We consider only the main part of the lift force generated by the
windward side of the wing, i.e., we assume that the leeward side is formed by an undisturbed stream surface passing
through the leading edge. For comparison, we take an infinitely long plate of finite width, which is normal to the
xy plane (the x axis is directed along the free-stream velocity V and the y axis is opposite to the lift force). The
edge of the plate makes an angle Λ with the xy plane. The lift-to-drag ration of the plate is
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(the ratio of heat capacities is assumed to be 7/5). Here M1 is the Mach number for the velocity component normal
to the leading edge upstream of the shock wave, M is the free-stream Mach number, p2/p1 is the ratio of pressures
upstream and downstream of the shock wave (for a delta wing and a conical waverider, p2 is the pressure averaged
over the area). The angle of attack α, the flow deflection behind the shock wave δ, and the value of Λ are related
as sinα = M1 sin δ/M and sin Λ = tan α/ tan δ.

Figure 1 shows the lift-to-drag ratio K of the plate versus the pressure ratio p2/p1, which is equivalent to
the dependence of K on the lift force if the projection of the wing area onto the y axis is prescribed, for M = 3
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Fig. 1. Lift-to-drag ratio of wings versus the lift force for M1 = 1.2 and Λ = 23.8◦ (curve 1);
M1 = 1.3 and Λ = 25.5◦ (curve 2), M1 = 1.4 and Λ = 27.5◦ (curve 3), M1 = 1.5 and Λ = 29.5◦

(curve 4), and M1 = 1.6 and Λ = 31.4◦ (curve 5); the solid and dashed curves refer to an infinitely
long plate for M2 > 1 and M2 < 1, respectively, the dotted curve refers to a “limiting” plate, AND
the dot-and-dashed curve refers to a triangular plate, Nonweiler wing, or right wedge (Λ = π/2);
the points refer to a conical waverider (βc = 5, 10, and 15◦) (1), the cone generatrix (βc = 5, 10,
and 15◦) (2), a forward-swept wing normal to the xy plane (3), and a wing with zero drag (4).

(M2 is the Mach number for the normal component of velocity behind the shock wave). For high Mach numbers,
the calculation results are qualitatively similar.

The above formula demonstrates the positive influence of slipping: an increase in K with decreasing angle
Λ for a given lift force p2/p1. As for a cone and a finite-length wedge, the actual limit for an infinite swept plate is
M2 = 1, since perturbations from the trailing edge reach the shock wave at M2 < 1, which is incompatible with the
boundary conditions on the shock wave. The lift-to-drag ratio of a triangular plate calculated by the linear theory
depends only on the Mach number and on the lift coefficient Cy and is independent of the angle Λ [4].

Based on the results of systematic calculations (numerical solution of the Euler equations [5]), we obtained
the approximate formula for the mean pressure at the lower surface of the delta wing

〈p〉lower
p∞

= 1 +
1.4 M2α√

M2 − 1
[1 + 0.01 M (57.3α)1 + 0.015M],

from which IT follows that the lift-to-drag ratio of the triangular plate (K = cot α) calculated by the nonlinear
theory depends only on the Mach number and lift force. The pressure calculated by this formula equals the pressure
behind the shock wave Λ = π/2. This allows us to calculate the wave drag of pyramids with faces in the form of
isosceles triangles, which may be significantly lower than the drag of cones of an identical volume. The lift-to-drag
ratio of the triangular plate is significantly lower than the lift-to-drag ratio of the “limiting” plate (M2 = 1); the
Nonweiler wing (waverider) [6] and the right wedge with side washers (Λ = π/2) [7] have the same lift-to-drag ratio
(Fig. 1).

On the delta wing, the effect of the swept wing [8] is compensated by the pressure decrease in its central part.
The pressure increase associated with this effect corresponds to regions behind the shock waves between the edges
and characteristics emanating from the wing tip. These regions disappear at M2 = 1. To preserve this effect, it is
necessary to prevent penetration of perturbations from the wing beginning (plane of symmetry or airframe/wing
junction) to the flow region behind the shock wave, which may be done by adding the “hardened” stream surface
beginning at the shock wave and reaching the wing surface. This surface may be a plane. As a result, we obtain a
waverider with two planar shock waves attached to the edges of the wing and the centerbody (wedge).

There are more possibilities for choosing the optimal parameters in considering the waverider with three
planar shock waves (Fig. 2), which has the wing OFDC (the angle of flow deflection in the shock wave is δ2) and
the airframe OABC (the angle of flow deflection in the central shock wave is δ1) (the x axis is directed along the
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Fig. 2. Projection of the waverider with three planar shock waves onto the yz plane: the dashed curves refer to the
trailing edges of the wedge and dot-and-dashed curves refer to the lines of intersection of shock waves with the yz plane.

free-stream velocity). We note an interesting feature of the flow behind the side shocks: the “hardened” stream
planes passing through the vectors of the free-stream velocity and the flow behind the shock wave may generate a
lift force in the case of zero drag. This plane is the normal-to-shock wing OCG (ϕ3 = 0). The end of the wing with
the lift force other than zero, which is bent along the streamline behind the shock wave EH whose plane is normal
to the shock wave, has zero drag also (Fig. 2). The lift-to-drag ratio of a constant-width and finite-length plate
with the same bent ends (swept wedge with washers) is the same as the lift-to-drag ratio of an infinite plate, but
the total lift force of the wing ends equals zero if the trailing edges of the washers are identical. For an identical
length of the wing and airframe, the lift-to-drag ratio of the waverider is

K =
{

1 +
cos(ϕ1 + ϕ2)

sinϕ1
[sinϕ2 + cosϕ2 tan ϕ3(1− a2)]

}{
tan δ1 +

tan δ2
sinϕ1

[sinϕ2 + cosϕ2 tan ϕ3(1− a2)]
}−1

,

where a is the length of the chord of the bent end EH. If the pressure behind the shock waves is identical (δ1 = δ2),
then the lift-to-drag ratio is maximum at ϕ1 + ϕ2 = 0, i.e., in the case of the Nonweiler wing. Hence, the effect of
the swept wing is not manifested on the waverider considered either because of the presence of the wedge.

For a waverider with an axisymmetric conical shock attached to the wing edges, the wings of zero drag are
meridional planes, the additional surface is the airframe (a sector of a cone) [9], and the lift-to-drag ratio is maximum
in the case of a half-cone. However, the lift-to-drag ratio of this waverider is lower than the lift-to-drag ratio of a
delta wing and approaches the latter only if the cone half-angle βc is small, when the wing area is much greater
than the projection of the cone area onto the y axis (see Fig. 1). The local lift-to-drag ratio on the lower generatrix
of the cone (cot βc) is even smaller than the lift-to-drag ratio of the waverider considered above; though the value
of K increases (simultaneously with decreasing pressure) along the streamline from the cone to the shock wave,
it equals the lift-to-drag ratio behind the planar shock wave only on the shock wave itself. Therefore, we cannot
say that the waverider designed from a conical shock has a better lift-to-drag ratio than the waverider constructed
using a planar shock. The volume of the half-cone is significantly smaller than the volume of the Nonweiler wing or
a delta wing with the leeward side formed by free-stream planes. We can also add that concave transverse contours
of the wings were obtained in solving variational problems, and the shock wave is closer to planar rather than to
conical [10, 11].

Obviously, the effect of the swept wing may be achieved only by using wings of greater length than that of
the airframe. If the airframe has a bottom, the side edge of the wing CD (Fig. 2) should be located outside of the
region of propagation of disturbances from the bottom edge or coincide with the boundary of this region. If the
wedge-bottom edge BC is straight, the region of weak perturbations emanating from it is bounded by characteristic
cones with apices at the points B and C and planes enveloping cones with apices at points of the straight line
BC [12]. In the coordinate system with the origin at the point C, the x axis directed along the streamline, the y
axis directed opposite to the lift force, and the z axis directed toward the shock wave, the tangent of the angle of
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Fig. 3. Cross-sectional contours of the waverider with a cylindrical shock wave attached to the leading edge (the
dashed curve is the line of intersection of the wave by a horizontal plane).

inclination of the line of intersection of the envelope with the wing plane λ to the x axis is

tan λ

m
=
k
√
k2 + l2 −m2 −ml

k2 −m2
.

Here k = dy/dx and l = dz/dx are the tangents of the angles of inclination of the trailing edge of the wedge

and m =
√

(M2 + 5)/[1 + M2
1(1− v2

2)/5]− 6 is the tangent of the angle of inclination of the characteristic to the
streamline [v2 = cos θ2/ cos(θ2 − δ2) is the ratio of the normal components of velocity downstream and upstream
of the shock wave, where θ2 is the angle of inclination of the shock wave]. For x > 0, k > 0, and l 6 m and
x < 0, k < 0, and l 6 −m, the region of propagation of disturbances is bounded by the characteristic tan α = m;
otherwise, it is bounded by the envelope. If the edge is located in the yz plane and dz/dy > 0, then we have
tan δ/m =

√
1 + (dz/dy)2. The region of flow retaining behind the shock is expanded with distance from the origin

if γ − λ > 0; the leading and side edges are parallel for γ = λ. In both cases, this region is infinite. The region is
constricted and has a finite length for γ−λ < 0 [γ is the angle between the leading edge and the streamline behind
the shock; tan γ = v2/

√
(M/M1)2 − 1 ]. It should be noted that the length of wings of the waverider with a conical

shock is limited, since the characteristic crosses the shock wave. In the presence of a wedge, the case M2 < 1 is
realistic [13], but the optimum in the lift-to-drag ratio is more probable for M2 > 1, since the wing does not become
narrower and the wedge is smaller in the latter case. An increase in the wing length and a decrease in the wedge
area owing to the addition of a third shock and inclination of the trailing edges (dashed curves in Fig. 2) allow us to
approach the lift-to-drag ratio of the “limiting” plate. The problem should be solved taking into account technical
conditions for the vehicle and the friction force.

Several interacting wings may be used for a limited length.
A sharp wedge may be avoided by using a gas flow behind a cylindrical shock wave upstream of an infinite

swept wedge with circular bluntness; the results for a planar flow can be found in [14]. Figure 3 shows the cross-
sectional contours of the windward side of the waverider formed by streamlines behind the bow shock wave of a
blunted wedge with an angle of 20◦, passing through the plane leading edge, which is the line of intersection of the
wave by a horizontal plane (dashed curve). The dimensions in Fig. 3 are normalized to the bluntness radius of the
wedge. The x axis (the critical line of the wave) is inclined to the free-stream direction at an angle Λ = 41.8◦,
the y axis is located in the plane of symmetry of the wedge, and the Mach number is M = 3. With increasing x,
there appears an airframe smoothly transformed into a flat wing, as in the case of a waverider with two planar
shocks. The lift force and drag of the waverider are readily calculated via the components of the force acting on
the windward side:

X =
∫∫

(p− p1) dy dz, Y = p1V cos Λ
∫∫

(sin Λ− v) dy dz.

Here v is the projection of velocity onto the y axis; the limits of integration are the trailing edge and its projection
onto the bow shock wave.
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Fig. 4. Pressure behind the expansion wave on the plane with zero angle of attack (the curves for the cross sections
x = 1, 2, 3, 4, and 5 correspond to the values of the parameters M1 and Λ for curves 1–5 in Fig. 1).

Fig. 5. Projections of the forward-swept wing of low aspect ratio with a system of crossing shock waves attached
to the leading edges.

For the configuration “wedge–plate” with a shock wave attached to the leading edge of the wedge and an
expansion wave emanating from the junction of the wedge with the plate (hinge or inflection), for a zero angle of
attack of the plate, the pressure on the latter p3 for M > 3 and wedge angles lower than 10◦ differs insignificantly
from the pressure upstream of the shock wave p1 (“underexpansion” [15]); regimes of “overexpansion” are not
considered here. This condition is also valid in the case of a swept wing, if the line of inflection is parallel to the
leading edge, in accordance with the principle of independence [16]. However, if the line of inflection is normal to the
streamline behind the shock wave and the angle of deflection ∆ is such that the angle of attack of the deflected plane
is equal to zero, i.e., tan ∆ = tan α/ cos(Λ − γ), tan γ = v2/

√
(M/M1)2 − 1, and the Mach number upstream of

the expansion wave is M3 = M1v2/ sin γ, then we have p3 > p1. The excessive pressure behind the line of inflection
p3/p1 − 1 is rather high as compared to the pressure behind the shock wave p2/p1 − 1 (Fig. 4), which may be used
to generate the lift force with zero drag. The region of the pressure p3 is limited by the characteristic passing from
the point of intersection of the leading edge and the line of inflection.

We consider a system of regularly intersecting weak planar shock waves for designing a forward-swept wing
(the lift-to-drag ratio of the backward-swept wing with such a system of shocks is significantly lower than the lift-
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to-drag ratio of a delta wing [7]). An interesting feature of the forward-swept wing, in particular, is that it may be
calculated using the exact solution for an expansion flow with two waves and a tractor fin [17]. We direct the x axis
along the line of intersection of shock waves (Fig. 5). The leading edge of the wing (plate) is located on the first
shock wave OA, and its position is set by the angle ε so that we have y/x = tan ε and z/x = − tan ε tan θ1. The
streamline behind the first shock emanates from the end of the edge A, which forms the side edge AB. The second
boundary of the wing is the line of its intersection with the second shock OB. The line OB and the streamline behind
the second shock OD form the plane of the central wedge. To retain the flow behind the first shock, an additional
solid surface (fin) is needed; its plane passes through the side edge of the wing and the line of intersection of the
shock wave with the vertical plane AC. The trailing edge of the fin CB is assumed to be swept to reduce the drag
of the fin (the drag of the outer side equals zero, and the base drag is ignored). The flow velocity is directed at an
angle β to the x axis; the quantities marked by subscripts 1, 2, and 3 and corresponding to the velocity components
ahead of the first shock, behind it, and ahead of the second shock are

Vx1 = Vx2 = Vx3 = V cosβ, Vy1 = V sinβ, Vz1 = 0,

Vy2 = V v2 sinβ cos δ, Vz2 = −V v2 sinβ sin δ, v2 = cos θ1/ cos(θ1 − δ),

Vy3 = V v2v3 sinβ, Vz3 = 0, v3 = cos θ2/ cos(θ2 − δ).

The equation of the wing plane is

sin(θ1 − δ)
cos θ1

x−
( tan θ1

v2 tanβ
− sin δ

tan ε

)
y +

( cos δ
tan ε

− 1
v2 tanβ

)
z = 0,

the tangent of the line of its intersection with the xy plane is(y
x

)
0

=
sin(θ1 − δ)

sin θ1/(v2 tanβ)− sin δ cos θ1/ tan ε
,

and the angle of attack is α = β − arctan (y/x)0.
We consider two variants of the wing geometry: 1) the wing is normal to the xy plane [tan ε = (y/x)0 =

v2 tan β cos δ] and the lines AO and AB projected onto the xy plane coincide; 2) the wing is normal to the first
shock wave, and its drag equals zero; the wing passes through the free-stream line [(y/x)0 = tan β and tan ε =
tan β cos2 θ1]. The case of coincident planes of the wing and wedge is also possible (y/x)0 = v2v3 tan β, but it is
not considered here, since the lift-to-drag ratio of the wing is equal to the lower lift-to-drag ratio of the wedge. The
point B has the coordinates

xB =
sin(θ1 − δ) cos(θ2 − δ)

sin θ2 cos θ1
, yB =

tanβ tan (θ1 − δ) cos(θ2 − δ)
sin θ2

in the first variant and

xB =
sin(θ1 − δ) cos(θ1 + θ2 − δ)

sin θ2
, yB =

tanβ cos θ1 sin(θ1 − δ) cos(θ2 − δ)
sin θ2

in the second variant. In both cases, we have zB = yB tan (θ2 − δ). The trailing edge of the fin is assumed to be
sonic, and the length of its leading edge AC is

a =
l sinµ2

sin(γ + µ2)
, cos γ =

1√
1 + v2

2 tan 2 β
.

Here µ2 is the characteristic angle behind the first shock wave and l is the length of the line AB.
To eliminate perturbations from the line of intersection of the characteristic cone with the apex at the

point C and the second shock, we locate the trailing edge of the wedge BD in the plane normal to the xy plane;
the coordinate of the point D is yD = xBv2v3 tan β. The lift force and the drag of the wing with the wedge and
fin are calculated from the areas of projections of the xz and yz planes, using the coordinates of the points A,
B, C, and D. The calculation results for M = 3, β = 27–42◦, and δ = 4–8◦ are plotted in Fig. 1. Only for the
second variant of the wing geometry is the lift-to-drag ratio of the wing of low aspect ratio significantly greater
than the lift-to-drag ratio of the delta wing; therefore, taking into account the large area of the fin, it should be
rather considered as an entrance part of the inlet. With increasing aspect ratio (decreasing l), the lift-to-drag ratio
approaches the lift-to-drag ratio of an infinite plate.
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